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NYT Digits Puzzle
Abstraction of problem at the root of NYT digits puzzle

[combinatorics - numbers]

WehaveN integers d1 < d2 < . . . < dN . We have four possible operations×, ÷, +, and−. What
is the number of different real numbers that are greater than 1 that can be formed from combining
all N integers using the available operations.
(a) Say we have two different integers. How many different real numbers (that are greater than

1) can we form from these integers? (Note: Since we are looking for numbers that are greater than
1, we don’t consider negative numbers or fractions less than 1).

(b) Same question as above, but we have three different integers.
(c) What is the general number of real-numbers we can create with N integers?
(d) Solve the recursive relation in (c) using an exponential generating functionQ(x) =

∑∞
ℓ=1 xℓQℓ/ℓ!.

Solution:

1. If we have two integers, there are four different real numbers that we can create from them using the
operations ×, ÷, +, and −. Namely,

d2 + d1, d2 − d1, d2 × d1, d2/d1. (1)

Note that we are excluding the two operations (d1/d2) and d1 − d2 because we require the output of
subtraction to be greater than zero and the output of division to be greater than 1.
Let Qk be the number of unique integer combinations we can make with k numbers (according to the
specification that subtraction only yields non-zero integers and division only yields numbers greater
than 1). We thus have that

Q2 = 4. (2)

■

2. Say we have three numbers. There are (3
2
) ways we can select two numbers from that set of three.

When we select those two numbers, there are Q2 ways we can generate operation combinations from
them in order to yield a single number. We would then be left with the single number generated from
the operation combinations and the number that we did not choose from the "3 choose 2" operations.
For these two numbers, there are Q2 ways to combine them. Therefore, Q3 is

Q3 = Q2

(
3
2

)
Q2 = 48. (3)

■

3. We now want to generalize this result to the case where we have an arbitrary N numbers to combine.
To get to closer to this generalization, we consider the answer for Q4. Akin to the result for Q3, we note
that there are (4

3
)ways to select three numbers from a set of four. After we select those numbers, there

are Q3 ways we can generate operation combinations that set of three. After these combinations, we
would have a single number generated from the operation combination of the three numbers and the
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number we did not choose from the "4 choose 3" operations. There are Q2 ways to combine these final
two numbers and thus we find that one term of Q4 is

Q4 = Q2

(
4
3

)
Q3 + · · · . (4)

To find the other term, we do this operation again with a larger set of selected numbers. There are(4
2
) ways to select two numbers from a set of four. For the selected numbers there are Q2 ways to

combine them to generate a single number. For the unselected two numbers, there is also Q2 ways
to combine them into a single number. After these two separate combinations we would be left with
single numbers drawn from each set, which we can then combine in Q2 ways to yield a final result.
Thus, there are Q2

(4
2
)
Q2Q2 ways to do this combination and the full expression for Q4 is

Q4
?= Q2

(
4
3

)
Q3 + Q2

(
4
2

)
Q2Q2. (5)

However, we have done a bit of double counting. Saywe have the number (1, 2, 3, 4). If we choose (1, 2)
we have (3, 4) left over. Alternatively, if we choose (3, 4) we have (1, 2) left over. Combining (1, 2) in
all possible ways and then combining the result with all possible combinations of (3, 4) is the same as
combining (3, 4) in all possible ways and then combining the result with all possible combinations of
(1, 2). However, the factor (4

2
) counts both sets of combinations as distinct. To correct for this we need

to multiply it by 1/2. We then have the result

Q4=Q2

(
4
3

)
Q3 + 1

2Q2

(
4
2

)
Q2Q2. (6)

We can write this result more cleanly(and pave the way towards generalization) by introducing Q1 =
1. We then have

Q4=1
2Q2

[(
4
3

)
Q3Q1 +

(
4
2

)
Q2Q2 +

(
4
1

)
Q1Q3

]
= 960. (7)

Given the form Eq.(7), we can now generalize this result to the case where we have N integers. Match-
ing the form of the summations, we have

QN = 1
2Q2

N−1∑
k=1

(
N

k

)
QN−kQk, (8)

which is a pretty clean result. If one plugs the sequence 1, 48, 960, . . . into the OEIS, one finds that QN

represents
QN = 2N−1N !CN−1, (9)

where CN = 1
N+1

(2N
N

) are the Catalan numbers.
The Catalan numbers are a sequence of numbers that often appear in combinatorial problems with
some element of recursion. Why do they appear in the context of the NYT digits puzzle?
An explanation of their appearance comes from one of the applications of Catalan numbers described
in the associated Wikipedia entry (which is itself taken from Enumerative Combinatorics by Richard
Stanley).

Cn is the number of different ways n + 1 factors can be completely parenthesized (or the
number ofways of associating associatingn applications of a binary operator, as in thematrix
chain multiplication problem). For n = 3, for example, we have the following five different
parenthesizations of four factors:

((ab)c)d (a(bc))d (ab)(cd) a((bc)d) a(b(cd)) (10)
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When we are doing computations for the NYT digits game, we are essentially doing "parenthesiza-
tions" for a given ordering of numbers, where the operation that defines the parenthesization (ab) is
chosen from one of the Q2 = 4 operations that allow us to combine a pair of numbers. From here, the
connection to Catalan numbers is more clear. We can construct QN the number of ways to computa-
tionally combine N numbers by multiplying the factors

• CN−1: Number of ways to "parenthesize" N numbers for a given ordering
• N ! : Number of possible orderings of N numbers
• (Q2)N−1: Number of operation combinations for a given "parenthesized" combination
• 1/2N−1: Combinatorial correction for double counting re-orderings of elements in a pair

which yields

QN = N !
(

Q2

2

)N−1
CN−1,

as we previously found.

4. We want to solve Eq.(8) using exponential generating functions. Our result should reproduce Eq.(9).
First, we define the exponential generating function Q(x) as

Q(x) ≡
∞∑

ℓ=1

xℓ

ℓ! Qℓ. (11)

We note that Q(x) satisfies Q(x = 0) = 0. We will use this result to constrain the possible solutions
to the equation. Multiplying both sides of Eq.(8) by xN /N ! and summing the result from N = 2 to
N = ∞, we have

∞∑
N=2

xN

N ! QN = 1
2Q2

∞∑
N=2

N−1∑
k=1

1
k!(N − k)!QN−kQk xN−kxk

= 1
2Q2

∞∑
N=2

∞∑
k=1

1
k!(N − k)!QN−kQk xN−kxk, (12)

where in the second line we took the summation over k to infinity since we assume Qj = 0 for j < 1.
Introducing the identity∑∞

ℓ=1 δ(N, ℓ + k), we then obtain
∞∑

N=2

xN

N ! QN = 1
2Q2

∞∑
N=2

∞∑
k=1

∞∑
ℓ=1

1
k!ℓ!QℓQk xℓxkδ(N, k + ℓ),

= 1
2Q2

∞∑
k=1

1
k!Qk xk

∞∑
ℓ=1

1
ℓ!Qℓ, (13)

which (using Q1 = 1) gives us the equation

Q(x) − x = Q2

2 Q(x)2. (14)

Solving this equation for Q(x) in turn gives us

Q(x) = 1
Q2

(
1 −

√
1 − 2Q2x

)
, (15)
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where we discarded the extraneous solution that does not yield Q(x = 0) = 0. Next, we expand the
square root as a Taylor series. We write out this calculation in full

√
1 − u =

∞∑
k=0

(
1/2
k

)
(−u)k

=
∞∑

k=0

1/2(1/2 − 1)(1/2 − 2) · · · (1/2 − k + 1)
k! (−u)k

=
∞∑

k=0

1
2kk! (1 − 2)(1 − 4) · · · (1 − (2k − 2))(−u)k

=
∞∑

k=0

(−1)k−1

2kk! 1 · 3 · · · (2k − 3)(−u)k

= −
∞∑

k=0

1
2kk!

(2k − 1)!!
(2k − 1) uk

= −
∞∑

k=0

1
2kk!

(2k)!
2kk!(2k − 1)uk, (16)

which yields
√

1 − u = −
∞∑

k=0

1
2k − 1

(
2k

k

)(u

4

)k

. (17)

This result makes Eq.(15) become

Q(x) = 1
Q2

(
1 +

∞∑
k=0

1
2k − 1

(
2k

k

)(
Q2x

2

)k
)

= 1
Q2

∞∑
k=1

1
2k − 1

(
2k

k

)(
Q2x

2

)k

. (18)

Some combinatorial manipulation gives us
1

2k − 1

(
2k

k

)
= 2

k

(
2k − 2
k − 1

)
= 2Ck−1, (19)

where Ck are the Catalan numbers. With this new combinatorial coefficient, Eq.(18) becomes

Q(x) =
∞∑

k=1
Ck−1

(
Q2

2

)k−1
xk. (20)

And from equating this result to Eq.(15), we can thus infer

QN = N !
(

Q2

2

)N−1
CN−1, (21)

where CN−1 are the Catalan Numbers. The closed form expression for QN is in turn

QN =
(

Q2

2

)N−1 (2N − 2)!
(N − 1)! , [# of N number calculation combinations] (22)

which has the asymptotic behavior QN ∼ O
(
(2Q2)N

). In the case of the NYT digits game (for which
Q2 = 4), we have QN ∼ O(23N ).
■


